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Derivation of a solution for general initial and boundary conditions for a leaky strip 

aquifer obeying the Dupuit assumptions. 

 

Gerrit H.de Rooij, June 2013 

 

As demonstrated in the appendix, the equation in dimensionless space coordinate x and time 

coordinate t is of the form: 
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where A is given by  
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and B(t) represents head-independent fluxes (rainfall and the head-independent component of 

the flow to/from a deeper aquifer: 
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The IC and BC are: 
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Equation (1) is a parabolic, non-homogeneous 2
nd

 order PDE with non-homogeneous BCs. 

The following substitution removes the term AH (see also Farlow, 1993, pp. 58-61): 
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The non−homogeneous term in the PDE is now independent of H. The BC at x = 1 is non-

homogeneous. We seek a substitution that makes both BCs homogeneous (compare Farlow, 

1993, p. 43−47). Thus: 
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where V(x,t) is the new dependent variable and (t) and (t) are as yet unknown functions. 

From the first BC (Eq. (10)) we have: 
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From the second BC follows: 
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To ensure homogeneous BCs for V(x,t), (t) needs to be defined as: 
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From Eqs. (13) and (15) follows the definition of  (t): 
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The substitution in Eq. (12) thus becomes:  
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The system now becomes: 
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(Note that the term with dB/dt in Eq. (8) is cancelled by a similar term that arises when Eq. 

(17) is differentiated with respect to time.) 
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This system can be solved by the method of eigenfunction expansions (Farlow, 1993, p. 

64−70). We start from the solution of the associated homogeneous problem by separation of 

variables: 
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where X and T are as yet unknown functions. From this follows (Farlow, 1993, p. 33−41): 
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The BCs for V give for X: 
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The general solution for X is: 
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with C and E unknown constants. From Eq. (24) follows that C = 0. From Eq. (25) then 

follows that cos(x) = 0. Thus, we have: 
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Equation (B25) gives a valid solution for arbitrary values of En. These are therefore set to 1. 

The non−homogeneous term in Eq. (18) needs to be expressed as a series of Xn: 
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with fn(t) determined from  

xXXtfxX
t

tH
tBtAH nm

n

nm

At d)(d
d

),1(d
)(),1(e

1

00

1

0






 







    (29) 

Note that Xm and Xn are orthogonal on the integration interval for m   n (see Bruggeman, 

1999, p. 701−703), and the integral of their product therefore equals 0. In the sum, only the 

term for m = n is non−zero: 

xxλtfxxλ
t

tH
tBtAH mmm

At d)(cos)()dcos(
d

),1(d
)(),1(e

1

0

2

1

0

 







   (30) 

Note that setting the value of Em equal to one above is accommodated by the freedom to 

determine fm. Evaluating the integrals leads to: 
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With this, the series expansion of the non−homogeneous term is: 
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The solution V(x,t) was assumed of the form:  
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The linearity of the system of Eqs. (18)−(21) and the homogeneity of the BCs ensures that 

any linear combination of solutions is also a solution: 
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Tn needs to be chosen such that the following equality holds for an individual solution Vn: 
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Including in Eq. (34) the SOV solution to V to gives: 

 
n

n

Atnn

n X

n
t

tH
tBtAH

x

XT

t

T
X




















 

2

1

1

d

),1(d
)(),1(e

π

2

d

d

d

d
2

2


  (35) 

We replace the second spatial derivative of Xn by −n
2
Xn (Eq. (23)). This allows Xn to be 

divided out: 



 7 

 

 

   
t

tH

n

tB

n

tH

n

A
Tn

n
t

tH
tBtAHTn

t

T

At

n

At

n

At

n

n

n

At

n

n

d

),1(d
e

2

1

1

π

2
)(e

2

1

1

π

2

),1(e

2

1

1

π

2
π

2

11

2

1

1

d

),1(d
)(),1(e

π

2
π

2

11

d

d

2

2









































































































  (36) 

This is an ordinary differential equation in Tn. To simplify the notation we introduce 
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and 
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to simplify Eq. (36) to: 
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The solution to Eq. (39) is: 
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with  [T] an integration variable, and Fn a constant that needs to be determined from the IC.  

At t = 0, the integral becomes zero: 
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To find Fn we need to expand the IC of V(x,t) (Eq. (19)) in a series of the eigenfunctions Xn(x). 
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The full solution for Tn(t) thus becomes: 
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The solution for V(x,t) then is: 
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With Eq. (17) we find for W(x,t): 
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And finally, with Eq. (7) we obtain the solution for H(x,t): 
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With Eqs. (2) and (3) this leads to 



 10 

 

 
































































































































































0

22

0

π
2

11

1

0

π
2

1

d
d

),1(d)(
),1(e

2

1

)1(
e

dπ
2

1
cos)0,1()0,(

πe

π
2

1
cos

π

2

),1(),(

22

2

22

n

t

KD

aL
tn

nt
KD

aL

t
n

KD

aL

HRb

KD

L
H

KD

aL

n

xxnHxH

xn

tHtxH























           (47) 

The flux per unit length of surface water bank (parallel to coordinate x2) is then 
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The average hydraulic head is 
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By introducing  
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the expressions above simplify to 























0

)(π
2

1
cos

π

2
),1(),(

n

n tMxntHtxH      (47a) 

 
)(

1

2

1

2
),1(

02

tM

n

L

KD
t

x

Q
n

n
n



 














       (48a) 

 
)(

2

1

1-

π

2
),1()(

0
2

tM

n

tHtH n

n

n















       (49a) 



 12 

The upscaled conductivity that arises is similar to that defined by de Rooij (2012) (Eq. (56): 
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Equations (47)−(50), and therefore Eqs. (47a)−(49a) and (51), contain two integrals: 
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The problem analysis benefits considerably if these integrals can be evaluated analytically. 

For Equation (52) this is feasible for two hydrologically relevant cases: that of a horizontal 

groundwater level at t = 0, and that for steady flow in a non-leaky aquifer during constant and 

uniform groundwater recharge. For an initially horizontal groundwater level H(x,0) = H(0), 

Eq. (52) results in: 
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For steady recharge, the groundwater level is parabolic. The expression for H(x,0) − H(1,0) 

becomes 
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For this case, the integral in Eq. (52) is 
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For the case of arbitrary H(x,0), it should be noted that Eq. (52) has an integrand consisting of 

a product of a term that will often slowly vary over the integration interval with an oscillatory 

term that will oscillate at very high frequency for large n. Integration of such functions can be 

difficult (see Mikš et al., 2010). Since the slow−changing part can be approximated by 

piecewise linear segments between observation/simulation points, and the oscillating function 

is straightforward (constant wavelength and amplitude over the integration interval), 

analytical integration is feasible. Let xi denote one of k observation points, with x1 = 0 and xk 

= 1. The integral of Eq. (52) then becomes: 
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For the integral in Eq. (53) it is useful to note that rainfall and (potential) evapotranspiration 

are often recorded as daily totals, and thus can be readily converted to average daily flux 

densities. De Rooij (2012) showed that this resolution is adequate for regular groundwater 

modeling purposes. If groundwater recharge is assumed to be equal to the net infiltration, R(t) 

then becomes a staircase function.  

The surface water level is usually measured at distinct times. Linear interpolation between 

these times makes H(1,t) a continuous, piecewise linear function and its temporal derivative a 

staircase function. The integral is analytically tractable for both the piecewise linear and the 

staircase functions. The time line needs to be divided into intervals defined by the rainfall and 
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surface water recording times: irrespective of the variable being measured, a new time 

interval is started for all terms in the integral at each data collection time. 

In Eq. (53), the time for which the integral is sought is denoted by t, and τ denotes the 

dimensionless time running between zero and t. in the following, R(τ) and H(1,τ) are assumed 

to have been recorded simultaneously at τ = 0 and at an additional j values of τ (denoted τi) 

smaller than t. At time t, Rj+1(t), H(1,t), and dH(1,τ)/dτ|t  either have to be observed, or 

interpolated between observations. We invoke Eqs. (2) and (37) to simplify the notation of Eq. 

(53), and separate the integration intervals: 
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On each interval, H(1,τ) is linear, and R(τ) and dH(1,τ)/dτ are constant. The various terms in 

the integrand are separated accordingly to allow them to be evaluated individually. 
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Here, it is assumed that the constant values of R and dH(1,τ)/dτ on any interval are 

represented by the values at the end of that interval, as indicated by their subscripts. 

Expanding H(1,τ) gives 
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Two integrals appear in the expression. They are evaluated as: 
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With these expressions, Eq. (60) becomes 
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where the staircase nature of dH(1,t)/dt has been incorporated in the third and sixth terms. 

Expression (63) provides the explicit evaluation of the integral of Eq. (53) for piecewise linear 

H(1,t) and stepwise changing R(t). The terms involving exponential functions with −n in the 

exponent become excessively large, even for moderate n. The equation is therefore rewritten 

as: 
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For application in hydrological models that have discrete time steps, the calculations will 

restart every time step. The time is reset to zero at the start of the time step, and the 

dimensionless duration of the time step is denoted t1. Thus, H(x,0) will be the result of the 

computations of the previous time step. The surface water level will have to be updated by 

taking the flux between the groundwater and the surface water (calculated by the groundwater 

model), and the river flux. This will then give H(1,0). In all likelihood, H(1, t1) will be set 

equal to H(1,0) (to be updated at the end of the time step to provide a new value for the next 

time step. Nevertheless, the single-time step equations will be cast such that the surface water 

levels at the beginning and the end of the time step can vary. The value of R will be constant 

during the time step. 

For hydrological models, Equations (47a) through (49a) are of interest. The single 

time-step simplifies the integral over time in these equations, i.e. Eq. (53) and its fully 

evaluated form in Eq. (64). The single−time−step version of Eq. (64) reads: 
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In addition to the flux per unit bank length at the end of the time step it is useful to have the 

total amount of water (per unit bank length) that flowed from the aquifer to the surface water 

or vice versa during the time step: 
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With Eq. (50) the integral in this expression becomes 
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(67) 

With Eq. (64) we obtain 
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where the evaluation of the integral over x is given by Eq. (57). For the integral over time we 

find: 
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After some rearranging, this simplifies to 
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Appendix. Linearizing the dimensional equation and converting it to dimensionless form 

N.B.  The material covered here is taken verbatim from de Rooij, 2012. 

 

Invoking the Dupuit assumptions for groundwater flow eliminates vertical gradients in the 

hydraulic head, and only the horizontal coordinates remain. Phreatic aquifers may receive 

recharge from the unsaturated zone above that is independent of the local hydraulic head and 
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may exchange water with a deeper aquifer if the separating aquitard is somewhat permeable. 

Such exchange fluxes are assumed here to be proportional to the local hydraulic head. For a 

uniform, isotropic, phreatic aquifer overlying a level aquitard, the governing PDE then 

becomes: 
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    (A1) 

where x1 and x2 [L] are the horizontal coordinates, t
*
 is time [T], H is the hydraulic head [L], 

defined with respect to the top of the underlying aquitard, K [LT
−1

] is the hydraulic 

conductivity, R [LT
−1

] is the recharge or loss to evapotranspiration (R may be time dependent), 

 is the storage coefficient (occasionally termed drainable porosity for a phreatic aquifer, e.g., 

van Schilfgaarde, 1974), and a [T
−1

] ( 0) and b [LT
−1

] are constants determining the 

exchange with the deeper aquifer. If the deeper aquifer has a constant and uniform hydraulic 

head H2, −a
−1

 is the resistance of the aquitard, and b = −aH2. Equation (1) is the Boussinesq 

equation with additional production terms and does not have a general analytical solution. To 

make the equation analytically tractable it needs to be linearized by assuming that the 

variation in H is small with respect to H, and that  is a constant: 
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      (A2) 

where D [L] is the constant water level above the aquitard. The combination of the Dupuit 

assumptions and the linearization has a sound footing in classical drainage theory (e.g. Dumm, 

1954; Kraijenhoff van de Leur, 1958; van Schilfgaarde, 1970; Wesseling, 1979). Van 

Schilfgaarde (1974) gives a thoughtful discussion of the assumptions underlying the above 

linearization.  
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To analyze flow towards parallel drains, ditches, or streams with spacing 2L [L], we drop the 

second horizontal coordinate since the flow lines are all perpendicular to it. We also make the 

independent variables dimensionless by the following transformations: 
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to obtain: 
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      (A5) 

 


